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Received 6 April 2004; received in revised form 13 July 2004; accepted 19 July 2004

Available online 26 August 2004
Abstract

In this work, we study standard Euler updates for simulating stopped diffusions. As an immediate application, we

discuss the computation of first exit times of diffusions from a domain. We focus on one-dimensional situations and

show how the ideas for the simulation of killed diffusions can be adapted to this problem. In particular, we give a fully

implementable algorithm to compute the first exit time from an interval numerically. The Brownian motion case is trea-

ted in detail and extensions to general diffusions are given. Special emphasis is given to numerical experiments: For

every ansatz, we include numerical experiments confirming the conjectured accuracy of our methods. Our algorithm

is of order one in a weak sense. Comparisons with other algorithms are shown. Results that are superior to those

obtained with other methods are presented. When approximating a first hitting time distribution, the results obtained

with our algorithm are much better than those achieved with other methods.
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1. Introduction

1.1. Motivation

The simulation of a stopped diffusion with high accuracy is of significant interest in many applications.

Often, a good approximation of the first exit time of a stochastic process from a domain is needed to get

good convergence in numerical simulation. A typical application is the probabilistic solution of Dirichlet
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.07.009

q This work was supported in parts under the TH-Gesuch funds 0-20981-2.
* Tel.: +41 1 632 35 33.

E-mail address: fab@math.ethz.ch.

mailto:fab@math.ethz.ch.


F.M. Buchmann / Journal of Computational Physics 202 (2005) 446–462 447
problems in bounded domains. There, applying the Feynman–Kac formula to get a probabilistic represen-

tation of the solution, the first exit time plays a crucial role. Roughly speaking, a simulation procedure

works as follows: A path (a trajectory of a stochastic process) connected to the differential operator of

the partial differential equation is simulated and one integrates along this path. The integration procedure

has to be stopped when the path leaves the domain for the first time and the boundary condition is eval-
uated at this first exit point. Approximating the mathematical expectation by a finite mean over a (large)

sample then yields the (point-wise) Monte-Carlo approximation to the solution of the Dirichlet problem.

We recall this formulation briefly and introduce some notation. Let D be a bounded domain in n-dimen-

sional space with smooth boundary oD and consider the following boundary value problem (BVP). For

simplicity, we focus on Poisson�s equation:
1
2
DuðxÞ þ gðxÞ ¼ 0; x 2 D; uðxÞ ¼ wðxÞ; x 2 oD: ð1Þ
Consider the stochastic process
X xðtÞ ¼ xþ
Z t

0

dW ðsÞ; x 2 D; ð2Þ
where the integral is a stochastic integral in the sense of Itô and therefore (Xx(t))tP 0 is a Brownian motion

starting at x [1,2]. We introduce the first exit time of (Xx(t))tP 0 from D:
sðxÞ ¼ infft > 0 : XxðtÞ 62 Dg ¼ infft > 0 : X xðtÞ 2 oDg: ð3Þ

The connection to the BVP (1) is given by the following version of the Feynman–Kac formula: The solution

u(x) has the stochastic representation (under some regularity and smoothness conditions on g, w and D, see

[3])
uðxÞ ¼ E wðX xðsðxÞÞÞ þ
Z sðxÞ

0

gðX xðsÞÞds
� �

: ð4Þ
Sometimes, we find it more convenient to write uðxÞ ¼ Ex½wðX ðsÞÞ þ f ðsÞ�, where df = g(X(t))dt with

f(0) = 0. In this notation, the expectation is taken with respect to the measure Px connected to the solution
of dX = dW with X(0) = x (and implicitly s = s(x)).

Clearly, the Feynman–Kac formulation (4) reveals its full strength in numerical simulations mainly (but

not only) in high dimensions. Nevertheless, we concentrate on one-dimensional settings here, because: (i)

the simple one-dimensional situation is already interesting in its own right and contains the main difficulties

and (ii) we hope to be able to apply a big part of the ideas presented here also in higher dimensions. If n

becomes large, the domains D are usually smooth with boundaries. Near to the boundary it looks flat.

There, locally, the problem of a random walk approaching the boundary resembles to some extent that

of the one-dimensional situation. However, for domains with corners the situation becomes more complex
– but this topic will not be addressed here.

The algorithm we will construct exploits the fact that the stochastic differential equations (SDEs) need

only be approximated numerically in a weak sense with a finite summation arithmetic mean approximating

the expectation.

1.2. Difficulties in numerical simulation

At a first glance the numerical approximation of u(x) using (2) and (4) involves only the numerical solu-
tion of SDEs and averaging over a large sample (Monte-Carlo method [4]). This is nowadays a standard

procedure in many applications, see [5,6]. Nevertheless, if boundaries are involved, the situation is much

more subtle.
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The Euler scheme (or Euler–Maruyama scheme), due to its simplicity, is of great interest. Applied to

above situation with a fixed time step of size h, it takes the form [5,6] X0 = x, f0 = 0 and
X kþ1 ¼ Xk þ DW k and f kþ1 ¼ fk þ gðX kÞh for k ¼ 0; 1; . . . : ð5Þ
Here, an n-vector DWk = W(tk + 1) � W(tk) of i.i.d. normal random variables with mean 0 and variance

h (Gaussian random variables) is generated in each time step. We denote this distribution by the sym-

bol Nð0; hÞ; DW k � Nð0; hÞ: The main difficulty presents itself: When should the (numerical) integra-

tion be stopped? In other words: How shall X(s) and in particular s be approximated? We shall

concentrate on the approximation of s in this paper, corresponding to a constant boundary condition

w in (1).
For a simple exposition of the main concepts, we consider D = (�1,b) with x < b in what follows.

The naive approach is to stop as soon as Xk P b and to take as an approximation for the first hitting

time of level b either s � (k � 1)h, s � kh or a certain value between these two values. The drawback of

this approach is the loss of accuracy: Although the Euler scheme is of weak order one for a fixed final

time T with M + 1 discretization points (giving h = T/M in our notation), the rate of convergence (even

in the weak sense) in the presence of a boundary reduces to Oð
ffiffiffi
h

p
Þ, i.e., it is of weak order one half [7].

The use of exact Gaussian random variables for the increments of the Brownian motion in (5)

causes the following important drawback: The resulting discrete time random walk is no longer re-
stricted to the closure of the domain under consideration. In particular, (X(t))tP 0 (which we try to

approximate) might become larger than b within any temporal discretization subinterval: Although

the discrete random walk resulting from the Euler approximation (5) is exact in distribution sense, it

gives the process values only at discrete tk = kh. In between, for tk < t < tk + 1, we have no information

on the behaviour of the continuous process X(t) that we wish to approximate. It is well known [8,9,7]

that in numerical simulation one has to take into account the fact that anywhere near the boundary the

process might have left D and come back within step h: Even if both Xk and Xk + 1 < b, it is not un-

likely that X(t)P b for some t 2 (tk, tk + 1) – the process X(t) might follow an excursion within h, imply-
ing s < tk + 1. Obviously, the trivial stopping procedure (stopping only if Xk P b) will overestimate s, as
no intermediate excursions are monitored.
1.3. An exit probability approach for killed diffusions

To overcome this problem, instead of the unbounded increments DW k � Nð0; hÞ, bounded approxima-

tions can be used [10,11], or a quantization approach is adequate, see [12] and references therein.

Nevertheless, applying the usual Euler scheme (with DW k � Nð0; hÞ) can have its advantages as well. To
restore usual first-order convergence (in the weak sense), a simple hitting test was introduced by various

authors, see [8,9] and references therein. This test has to be performed after each time step with

Xk + 1 < b. It estimates the probability that an excursion occurred within (tk, tk + 1) if both Xk,Xk + 1 < b

and leads to improved statistics.

We summarize the principal idea of this approach for killed diffusions: Let a fixed T < 1 be given and

suppose that we are interested in the approximation of Ex½F ðX ðT ÞÞ1T<s� for some measurable F: Paths that

reach level b up to (and including) time T are killed, that is, they do not contribute to the expectation. If we

have, after an Euler step tk ! tk + 1 = tk + h < T, that Xk + 1 P b then, obviously, s < T and the corre-
sponding path is killed. To take into account a possible excursion across level b if Xk + 1 < b one proceeds

as follows: At the time the test is performed (after a step), Xk + 1 is known. Therefore, the bridge process

[13, p. 67] pinned in time-space coordinates at (tk,Xk) and at (tk + 1,Xk + 1) has to be considered (and will be

denoted by XXk ;h;Xkþ1ðsÞ). To check for a possible excursion, an i.i.d. random number distributed uniformly

in (0,1) (denoted by u � U) is generated and the path is killed if
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u6P sup
tk 6 s6 tkþ1

XXk ;h;Xkþ1
ðsÞP b

" #
¼ e�ð2=hÞðb�XkÞðb�Xkþ1Þ; u � U: ð6Þ
Gobet proved that first-order weak convergence can be obtained for the Euler scheme when applying this

test for killed diffusions in the presence of a boundary [7], see also [14].

1.4. Outline

The purpose of this work is to modify these ideas to the case of stopped (rather than killed) diffusions. In

this case, we try to approximate expectations of the form Ex½F ðX ðsÞ; sÞ� (see (4)). Our interest is hence in the

actual value of s rather than being satisfied by the assertion that (or if) s < T for some predefined (deter-

ministic) T. In other words, one wants to know (again in a statistical sense) when the first exit time actually

took place – in contrast to asking only if the exit did already occur. To accomplish this task, we construct in

a first stage the density of s of the bridge process under consideration and sample in a later stage a random

number from it. We show how a new interpretation of the exit probability of the bridge process (6) as a

distribution leads to more accurate results (yet of the same order) for exactly the same computational cost.
We then further improve our algorithm for the case that a discrete Xk + 1 falls outside D. In that case,

clearly s 6 tk + 1. Nevertheless, we show how to find an approximation for s 2 (tk,tk + 1).

We start with the Brownian motion case in Section 2. The simplicity of this process will allow us to pre-

sent our ideas precisely without obscuring details of notation. We then extend these ideas to general auton-

omous diffusions in Section 3. We always consider the two possible cases after a step: (i) Xk + 1 2 D (in

Sections 2.1 and 3.1, respectively) and (ii) X kþ1 62 D (in Sections 2.2 and 3.2, respectively). We show results

from numerical experiments in Section 4 where we first discuss a statistical study comparing various algo-

rithms (Section 4.1) and later show results of some applications to the Feynman–Kac formulation (Section
4.2). We conclude in Section 5.
2. The Brownian motion case

To simplify notation, we write y = Xk and z = Xk + 1. Recall that for a Brownian motion application of

the Euler scheme with step size h>0 means that z = y + n with n � Nð0; hÞ. In what follows, we denote the

corresponding Brownian bridge pinned at (tk,y) and at (tk + h,z) by Xy,h,z(s) and its law by Py;h;z½��. Addi-
tionally, s denotes the first hitting time of level b.

2.1. Inside: y, z < b (test for an excursion)

Recalling (6) we find the distribution, F, of the first hitting time s = s(y) w.r.t. Brownian bridge measure

for t > 0 as
F ðtÞ � Py;h;z½s6 t� ¼ e�ð2=tÞðb�yÞðb�zÞ: ð7Þ

The idea is now to generate a random variable T1 with distribution (7). To this end, invert (7) [5, p. 12],
T1 ¼ � 2ðb� yÞðb� zÞ
log u

; u � U: ð8Þ
The path hit b between tk and tk + h if T1 6 h (in a statistical sense). In that case, b was hit for the first time

at t ¼ tk þT1 and we approximate s � khþT1.

The application to the approximation of f(s) using (5) (for example) is now straightforward and we show

it only for this variant of our algorithm:
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f ðsÞ �
(5)

h
Xk�1

i¼0

gðX iÞ þT1gðX kÞ: ð9Þ
In what follows, we will not write down these approximations explicitly but only show how to generate the

last summand (i.e., its length of integration).

2.2. Outside: y < b 6 z (compute first exit time)

We first construct the needed density. Using absolute continuity of the measures Py and Py;h;z we have

[13, p. 67]
Py;h;z½s 2 dt� ¼ pðh; y; zÞ�1pðh� t; b; zÞPy ½s 2 dt�;
where p(t;x,y) denotes the Gaussian transition density: pðt; x; yÞdy ¼ Px½W t 2 dy�. Inserting [13, (1.2.0.2), p.

198] for Py ½s 2 dt� gives with y < b
Py;h;z½s 2 dt� ¼ b� yffiffiffiffiffiffiffiffiffi
2pt3

p
ffiffiffiffiffiffiffiffiffiffi
h

h� t

r
exp � ðz� bÞ2

2ðh� tÞ þ
ðz� yÞ2

2h
� ðb� yÞ2

2t

 !
dt ð10aÞ
and after some algebra
Py;h;z½s 2 dt� ¼ ðb� yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
2pt3ðh� tÞ

s
exp �ððb� yÞh� tðz� yÞÞ2

2htðh� tÞ

 !
dt: ð10bÞ
We remark that some simple manipulations in the exponent show that this formula reduces for h = 1 and

y = 0 to [15, Formula (2.1) and Lemma 3].

We now show how to sample from (10). To simplify notation, we set y = 0 and h = 1. We say that a ran-

dom variable X follows the inverse Gaussian distribution with parameters c > 0, d > 0 (and write

X � IGðc; dÞ) if it has the density [16]
P½X 2 dx� ¼
ffiffiffiffiffiffiffiffiffi
c

2px3

r
exp � cðx� dÞ2

2d2x

 !
dx; x > 0:
The basic observation is that if X � IGðb2; b=ðz� bÞÞ then t = X/(1 + X) is a random variable with density

(10) (with h = 1, y = 0).

To see this, define p(t) for 0 < t < 1 as P0;1;z½s 2 dt� ¼ pðtÞ10<t<1dt (see (10)). By the substitution x = t/

(1�t)P 0 with dt = dx/(1 + x)2 we find
pðtÞdt ¼ bffiffiffiffiffiffi
2p

p ð1þ xÞ2

x
ffiffiffi
x

p exp � b� xz=ð1þ xÞð Þ2

2x=ð1þ xÞ2

 !
dx

ð1þ xÞ2
¼ bffiffiffiffiffiffiffiffiffi

2px3
p exp � b2

2x
1� z� b

b
x

� �2
 !

dx:
The claim now follows immediately with c = b2 and d = b/(z�b).

For the general bridge, we find analogously that if X � IGððb� yÞ2=h; ðb� yÞ=ðz� bÞÞ, then the ran-

dom variable t = hX/(1 + X) has density (10). Michael et al. presented an algorithm to generate random var-

iables Xs following the inverse Gaussian distribution [17, p. 89].

In the case that z = Xk + 1 > b, we therefore generate X � IGððb� yÞ2=h; ðb� yÞ=ðz� bÞÞ using [17], set

T2 ¼ hX=ð1þ X Þ and stop integration at tk þT2 (analogously to (9)).
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3. Extension to general diffusions

We now expand the ideas presented for Brownian motion in Section 2 to general diffusions given by

(compare with (2))
X xðtÞ ¼ xþ
Z t

0

lðX xðsÞÞdsþ
Z t

0

rðX xðsÞÞdW ðsÞ; rð�Þ > 0; ð11Þ
i.e., Xx(t) solves the (autonomous) SDE dX = l(X)dt + r(X)dW with X(0) = x. The Euler approximation

with step size h > 0 then reads (compare with (5))
X 0 ¼ x and Xkþ1 ¼ X k þ lðX kÞhþ rðX kÞDW k for k ¼ 0; 1; . . . ð12Þ
with corresponding continuous-time approximation (frozen coefficient approximation)
X ðtÞ ¼ Xk þ lðX kÞðt � tkÞ þ rðXkÞðW ðtÞ � W ðtkÞÞ; t 2 ½tk; tkþ1Þ:
To derive our formulae, we therefore consider the constant coefficient diffusion
X l;r
x ðtÞ ¼ xþ lt þ rW ðtÞ; t > 0:
We further write X l;r
y;h;z for the corresponding bridge pinned at y and z with length h and denote its law by

P
l;r
y;h;z.

Remark 1. In the context of approximating killed diffusions, it was pointed out that this frozen coefficient
approximation gives incorrect asymptotics and that more sophisticated approximations should be used

[18,19]. The application of these ideas to stopped diffusions remains a topic of ongoing research.
3.1. Inside (test for an excursion)

Consider the function f(u) = u/r and define DðtÞ ¼ f ðX l;r
x ðtÞÞ. By Itô�s formula [13,2], D satisfies dD = l/

rdt + dW with D(0) = x/r, i.e., (D(t))tP 0 is a Brownian motion with drift m = l/r (starting at x/r), see [13,
I.IV.5. and II.2.]. As before let s be the first hitting time of level b > y. Obviously,
P
l;r
y;h;z s6 h½ � ¼ P sup

06 t6 h
X l;r

y;h;zðtÞ
� �

P b
� �

¼ P sup
06 t6 h

Df ðyÞ;h;f ðzÞðtÞ
� �

P f ðbÞ
� �

;

where Df(y),h,f(z) denotes the version of D which is pinned at f(y) and f(z) and has length h. Now (we set

v = f(y), w = f(z) and c = f(b)) � �

P sup

06 t6 h
Dv;h;wðtÞP c

� �
¼ Pv sup

06 t6 h
DðtÞP c;DðhÞ 2 dw

� �
¼

Pv sup
06 t6 h

DðtÞP c;DðhÞ 2 dw

Pv DðhÞ 2 dw½ � :
Inserting [13, (2.1.0.6), p. 250 and (2.1.1.8), p. 251] yields
P
l;r
y;h;z s6 t½ � ¼ e�ð2=tr2Þðb�zÞðb�yÞ; ð13Þ
which is equivalent to [7, p. 169]. Inverting (13) we get (compare with (8))
T1 ¼ � 2ðb� yÞðb� zÞ
r2 log u

; u � U; ð14Þ
where (we recall that) r = r(y).
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3.2. Outside (compute first exit time)

For y < b < z, we proceed similarly to Section 2.2. We have for 0 6 t < h the density [20, (3.7), p. 371]
P
l;r
y;h;z½s 2 dt� ¼ pl;rðh� t; b; zÞ

pl;rðh; y; zÞ Pl;r
y ½s 2 dt�; ð15Þ
where pl,r(t;x,y) denotes the transition density of the solution to dX = ldt + rdW. Solving Kolmogorov�s
forward equation one finds
pl;rðt; x; yÞ ¼
exp � ðy�lt�xÞ2

2tr2

� �
ffiffiffiffiffiffiffiffiffiffiffi
2ptr2

p :
To find the density of the first hitting time one solves for a > 0 the differential equation [13, p. 18]
r2

2

d2

dx2
þ l

d

dx
� a

� �
uðxÞ ¼ 0
and combines the increasing and decreasing solutions (denoted by u› and ufl, respectively) to get the La-

place transform of s
El;r
y e�as½ � ¼

u"ðyÞ=u"ðbÞ; y6 b

u#ðyÞ=u#ðbÞ; yP b

� 	
¼ exp

l
r2

ðb� yÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 2ar2

p
r2

jb� yj
 !

:

Inverting it (using [13, Appendix]) we get the density (recall that b > y)
Pl;r
y s 2 dt½ � ¼ b� yffiffiffiffiffiffiffiffiffiffiffiffiffi

2pt3r2
p exp �ðb� lt � yÞ2

2tr2

 !
dt:
Inserting everything into (15) yields
P
l;r
y;h;z s 2 dt½ � ¼ b� yffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2t3
p

ffiffiffiffiffiffiffiffiffiffi
h

h� t

r
exp � 1

2r2

ðz� bÞ2

ðh� tÞ � ðz� yÞ2

h
þ ðb� yÞ2

t

 ! !
dt:
Recalling (10), we thus generate X � IGððb� yÞ2=ðhr2Þ; ðb� yÞ=ðz� bÞÞ and set T2 ¼ hX=ð1þ X Þ (where
again r = r(y)).
4. Numerical experiments

We show results of extensive tests performed with the algorithm derived in the previous sections. For

weak approximations, path-wise convergence is not required, but a good approximation of the distribution

is important. In our case, special emphasis is on the computation of first exit times. We thus start (in Section

4.1) with a statistical test where we compare the numerically obtained density of a simple first hitting time
(i.e., a histogram) with the known analytical density. We compare our algorithm with a variety of other

approaches. At a later stage (in Section 4.2), we show the performance of our algorithm when applied

to the numerical solution of some one dimensional Dirichlet problems via the stochastic representation

of the solution.



F.M. Buchmann / Journal of Computational Physics 202 (2005) 446–462 453
4.1. Approximating the density of the first hitting time: a statistical comparison

We compute numerically the first hitting time (denoted by s) of level b = 1 of a Brownian motion. The

corresponding density is
Fig. 1.

(0 6 t

wherea
P0 s 2 dt½ � ¼ e�ð1=2tÞffiffiffiffiffiffiffiffiffi
2pt3

p dt; t > 0: ð16Þ
It has its maximum at t = 1/3, where it forms a non-symmetrically shaped peak, and it has a very long tail,

see Fig. 1. We performed two tests checking the approximation of the peak and of the tail, respectively

(peak test and tail test).

4.1.1. Setup

We briefly describe the precise setup for the statistical tests. As E0½s� ¼ 1 and P0½s 2 dt� � 0 for t � 0 we

compute a histogram only for t 2 [T0,T1] with 06T0 < T1 < 1 fixed. If the size of the bins is very small, we

choose T0 > 0 such that every bin is hit with sufficiently high probability. If a simulated path ran longer

than T1 it was stopped and thus contributes only to the tail of the corresponding histogram (which was

not included into the v2-test). To measure the quality of the approximations, we performed a v2-test over
two different sets of (equidistant) time intervals (the bins of the histogram). As a measure of approximation,

we computed [21]
v2 ¼
XNb�1

i¼0

Ni � Npið Þ2

Npi
; ð17Þ
where Nb denotes the number of bins, N is the sample size, Ni is the number of trials that fell in bin i and pi
is the relative expected frequency of bin i. Asymptotically, v2 has a v2-distribution with Nb � 1 degrees of

freedom (DOFs).

For the peak (tail) test, we have chosen the bins 0.05,0.06, . . ., 1.0 (0,1, . . ., 250) and the sample size
N = 1e5 (1e6).
Plot of the density (16) together with the bins chosen for the statistical test. Note (i) the different scalings used on the t-axis

6 1 on the left, whilst 0 6 t 6 20 on the right), and (ii) that for the tail test bins up to t = 250 where used (see Section 4.1.1)

s t 6 20 in the plot.
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4.1.2. Results

To get an impression of what can be expected with the chosen setup of the test and the random number

generator used, we started by sampling N random numbers directly from the density (16). Inspired by the

Box–Muller-method to generate two normally distributed i.i.d. random numbers [5, p. 13] we define for

u; v � U and b 6¼ 0
Table

v2 per

Peak t

Tail te
sðu; vÞ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln u

p
sinð2pvÞ

 !2

; tðu; vÞ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln u

p
cosð2pvÞ

 !2

ð18Þ
with 0 < s, t < 1. It is easy to see that for b = 1 the random variables s, t are i.i.d. with density (16).

We obtained the results shown in Table 1 when running the two tests.

From the results in Table 1, we see that a v2 per DOF of the order of unity can be expected.

In order to thoroughly motivate the need for an exit test we start with the results for the Euler method

without any exit test, i.e., we stop (only) if Xk + 1 P 1 and set s = tk in this case.

From Table 2, we see that the simple Euler scheme gives very poor results. In particular, it completely
fails to resolve the peak at t = 1/3. In addition, the approximation of the tail is far from satisfactory. The

poor resolution becomes especially apparent, if we compare the results from Table 2 with the results we

obtained when applying our algorithm to the same test problem, see Table 3.

From Table 3, we see that our algorithm gives very good results: The tail of (16) is approximated per-

fectly, independent of the chosen step size h, and the approximation of the peak of this same density be-

comes better and better as h is reduced (k increases). Note that the barrier is at b = 1 whereas the peak

of the density is at t = 1/3. Therefore, good approximation can only be expected when: (i)
ffiffiffi
h

p
� 1 and

(ii) h�1/3 – and from Table 3 we see, that a step size as big as h = 1/8 already gives reasonable results.
We next compare our algorithm with other approaches. To demonstrate the superiority of our algorithm

we show the ratio obtained when dividing the v2-value of the alternative approaches by the corresponding

value of the advocated algorithm (the larger a value the poorer the corresponding result).

We start with algorithms applying a killing test. These perform the test (6) if z = Xk + 1 < 1 and stop (if

the test evaluates successfully or if z P 1) at tk, tk + 1/2 = tk + h/2 or at tk + 1. Results from the peak test are

in Table 4 and those from the tail test in Table 5.

From Table 4, we see that our algorithm gives much better results in the peak test. We further note that

for smaller step sizes (larger k) the other algorithms show very similar (yet poor) results.
From Table 5, we see that for the approximation of the tail, stopping at tk or at tk + h/2 is satisfactory

whereas stopping at tk + 1 deteriorates results especially for large step sizes.

We next want to show that our test (see Section 2.1) already resolves the most severe problems in

approximating the peak of the density (16). We therefore applied our test (Section 2.1) and stopped at

tk þT1 if T1 6 h. In the case that z = Xk + 1 P 1 we stopped at tk or at tk + 1/2 = tk + h/2, respectively.

For comparison, we include further results when applying our test in conjunction with Mannella�s approach
[9] when zP 1. We limit ourselves to the results of the peak test, see Table 6.

From Table 6, we see that results are improved significantly when the test from Section 2.1 is applied, yet
none of the approximations when Xk + 1 P 1 reaches the quality of the algorithm that samples T2 (as de-

rived in Section 2.2).
1

DOF obtained when sampling directly (using (18)) from (16) for various sample sizes N

N = 1e4 N = 1e5 N = 1e6 N = 1e7

est 0.945 1.01 1.08 1.03

st 1.10 1.12 0.897 1.00



Table 2

v2 per DOF obtained with the Euler method without any exit test for various step sizes h = 1/2k

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Peak test 7.62e3 5.89e3 4.15e3 2.51e3 1.29e3 5.57e2 1.60e2

Tail test 6.29e2 3.85e2 2.31e2 1.35e2 7.56e1 4.18e1 2.22e1

Table 3

v2 per DOF obtained with our algorithm for various step sizes h = 1/2k

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Peak test 6.38e1 9.38e1 1.99e1 2.16 1.58 1.34 1.14

Tail test 1.02 1.03 0.973 1.05 1.02 0.920 0.964

Table 4

Comparison of results of the peak test between various algorithms applying a killing test and our algorithm (for various h = 1/2k)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

s = tk 1.81e2 1.11e2 3.90e2 2.09e3 1.32e3 5.69e2 1.70e2

s = tk + 1/2 3.96e2 1.54e2 4.14e2 1.85e3 1.13e3 5.43e2 1.68e2

s = tk + 1 6.83e2 1.84e2 4.15e2 1.79e3 1.12e3 5.38e2 1.66e2

Table 5

Comparison of results of the tail test between various algorithms applying a killing test and our algorithm (for various h = 1/2k)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

s = tk 1.02 1.07 0.971 1.03 0.919 1.22 1.06

s = tk + 1/2 1.02 1.07 0.971 1.03 0.919 1.22 1.06

s = tk + 1 2.25e3 5.93e2 1.15e2 2.30e1 6.58 2.73 1.55

Table 6

Comparison of results of the peak test between our algorithm and various algorithms that generate T1 to test for an excursion (for

various h = 1/2k)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

s = tk if z P 1 4.48e1 2.91e1 9.82e1 5.19e2 3.28e2 1.41e2 42.1

s = tk + 1/2 if z P 1 1.00e2 3.86e1 1.06e2 4.67e2 2.79e2 1.37e2 4.17e1

s from [9] if z P 1 2.14 1.20 2.82 1.07e1 9.59 6.53 2.22

Table 7

Comparison of results of the peak test between our algorithm and exponential time stepping methods (for various k = 2k = 1/h)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

s = k/k 2.00e2 9.81e1 3.08e2 1.75e3 1.60e3 5.91e2 1.74e2

s = (k + 1)/k 3.98e2 1.34e2 3.38e2 1.59e3 1.10e3 5.26e2 1.64e2

s = (k + u)/k 4.38 3.42 1.42e1 4.60e1 2.25e1 1.02e1 6.82
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We conclude this section by showing the comparison with results obtained when applying the method of

exponential time stepping [22,23]. This method allows a killing test similar to (6). We approximated s by k/

k, (k + 1)/k or by (k + u)/k where the random time step is exponentially distributed with parameter k > 0

(the expected length of a time step is 1/k) and u � U. The last approach is motivated by the fact that
the first hitting time is independent of the length of a time step. To compare with our algorithm we set

k = 1/h. See Table 7 for the peak test and Table 8 for the tail test.



Table 8

Comparison of results of the tail test between our algorithm and exponential time stepping methods (for various k = 2k = 1/h)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

s = k/k 1.22e2 4.51e1 1.60e1 5.27 2.00 1.46 1.20

s = (k + 1)/k 2.16e3 6.97e2 2.02e2 4.76e1 1.24e1 4.26 1.97

s = (k + u)/k 1.22e2 4.51e1 1.60e1 5.27 2.00 1.46 1.20
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From Table 7, we see that the exponential time stepping method has problems in approximating the

peak of (16) if s is approximated by the expected value of either the beginning or the end of the time step.

We speculate that this is due to the smearing (around this expectation). Including additional randomness,

however, leads to much better results.

From Table 8, we see that all the variants of the exponential time stepping method in discussion fail in

approximating the tail of (16) for large step sizes (small k). Increasing k, however, gives results that are com-

parable to the ones obtained with our algorithm.

4.2. Application to the Feynman–Kac representation

We show results when applying our method to the solution of ((Æ) 0 = d/dx(Æ))
rðxÞ2

2
u00ðxÞ þ lðxÞu0ðxÞ þ gðxÞ ¼ 0; x 2 D ¼ ða; bÞ; uðaÞ ¼ uðbÞ ¼ 0; ð19Þ
with �1 < a < b < 1, r(Æ) > 0, using the Feynman–Kac formulation (4) with Xx(t) given by (11).

We apply the usual half-space approximation [7,24], i.e., an excursion test is applied only to the closest

boundary. If y (z) denotes the Euler approximation at the beginning (end) of a step, and z 2 D, this is the

boundary point which minimizes the sum of the distances to y and z. If this choice is not unique, we simply

choose b. If z 62 D, we choose b (a) to be the closest boundary if z P b (z 6 a) in order to sample T2.
Compared methods: We always compare the results obtained with the following methods (recall that

z = Xk + 1):

T: The trivial Euler method which stops integration only if z 62 D and approximates then s � tk.

K: The method which tests for an excursion with the killing test (6). We show results from three variants

which differ by the choice of the approximation for s if an excursion is detected or if z 62 D:
Kb: s � tk (beginning of the corresponding time step).

Km: s � tk + h/2 (middle of the corresponding time step).

Ke: s � tk + 1 (end of the corresponding time step).

S: Our algorithm, which samples T1 (see (8), (14)) to test for an excursion and T2 if z 62 D (based on the

inverse Gaussian distribution). We stop integration at tk þT1 if an excursion is detected and at

tk þT2 if z 62 D.

Symbols in plots:

In our plots (Figs. 2–4) we use the symbols summarized in Table 9.

Individual results are connected with a dotted line to guide the eye.

Parameters in simulations:

For D = (a,b) we always evaluate numerically u(x) at x = 0 (top), at x = 0.9 Æ b (middle) and at x = 0.99 Æ b
(bottom). Due to the small magnitude of the errors we had to take very large sample sizes in order to

observe the convergence of the systematic errors: We show plots of the relative errors versus step size h

for the two sample sizes N = 1.6e7 (left) and N = 6.4e7 (right).
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4.2.1. Brownian motion case

We start with the Brownian motion case, i.e., we set r(x) ” 1 and l(x) ” 0. Then (19) reduces to Poisson�s
equation (1) and Xx(t) is given by (2).

We show results for two variants, namely
D ¼ ð�1; 1Þ; gðxÞ � 1 ) uðxÞ ¼ Ex½s� ðexit problemÞ ð20aÞ

and
D ¼ � p
2
;
p
2

� �
; gðxÞ ¼ cosðxÞ ) uðxÞ ¼ 2 cosðxÞ: ð20bÞ
The results are shown in Fig. 2 for (20a) and in Fig. 3 for (20b).

From the plots in Fig. 2, we see that for the constant coefficient case the proposed method S (symbol ���)
indeed gives very accurate results. On the other hand, it is again obvious that the Euler method without any

corrections (T, symbol �*�) gives very poor results (and this remark carries over to the other examples whose

results are in Figs. 3 and 4).

Compared to the other methods tested, we consider method S overall most satisfactory: The resulting

errors are always among the smallest ones obtained. Although, for example method Km (symbol �+�) shows
a comparable behavior for x = 0 and x = 0.9, this method is much less accurate for x = 0.99 (very close to

the boundary). There, method Kb (symbol �h�) gives small errors for relatively large step sizes h albeit at the

price of a lower convergence order.
4.2.2. General test problem

In this section, we consider (19) with
rðxÞ ¼ 2þ sinðxÞ; lðxÞ ¼ � cosðxÞ 2þ sinðxÞ
2

� �
and gðxÞ ¼ 2 cosðxÞ: ð21Þ
For D = (�p/2,p/2) the analytical solution is uðxÞ ¼ cosðxÞ. Results are shown in Fig. 4.

From the plots in Fig. 4, we see that all the methods that apply an a posteriori test of some

kind to test for a possible excursion yield very similar results. Sometimes errors resulting from meth-

od S are smaller than those obtained with all the other methods we tested, whilst in other tests
methods Km or Ke show the best results. Note that method S is never considerably worse than

any of the other methods. Therefore this method is our preferred choice for the simulation of

stopped diffusions.
5. Summary

In this work, we presented an algorithm which leads itself to an efficient implementation for the simu-
lation of stopped diffusions. Our approach used standard Euler updates and it was based on a method for

the simulation of killed diffusions. Instead of simply checking if a path has reached a certain level within or

at the end of a time step, we constructed a true stopping time to stop the integration. To achieve this goal,

we sampled random numbers having approximatively the right distributions. In the case of diffusions with

constant coefficients, these distributions are by construction exact. This allowed us to add a final Euler step

of corresponding length to the simulated path and connected integrals. We think that this is the right ap-

proach for approximations in the weak sense.



Fig. 2. Relative error vs. step size h for test problem (20a).
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Our numerical tests showed evidence that the resulting distributions and thereof constructed weak

approximations are of very high quality. From the results of the numerical experiments we draw the fol-

lowing conclusions:



Fig. 3. Relative error vs. step size h for test problem (20b).
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	 If the quality of the distribution itself is important, our method S is clearly superior to all the others

tested (Section 4.1).

	 If the main interest lies in the approximation of (only) an expectation (Section 4.2), other methods deli-

ver comparable results.



Fig. 4. Relative error vs. step size h for test problem (21).

Table 9

Symbols used in the plots in Figs. 2–4 for the different methods tested

Method T Kb Km Ke S

Symbol �*� �h� �+� �·� ���
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	 It is, however, very important to include a test for intermediate excursions – the trivial method T is

clearly never satisfying.

	 Applying some sort of a posteriori corrections (either in form of a killing test as do methods Kb, Km, Ke

or in form of the test presented in this work and which resulted in method S) remedies the main deficien-

cies of method T and yields similar results.
	 The previous observation is (from a heuristical point of view) clear, as for example method Km (which

stops integration always in the middle of a time step) adds on average just as much to the integral as does

method S.

	 For the approximation of the simplest possible expectation (see the exit problem (20a) in Section 4.2.1,

where the numerical integration is exact in the weak sense and the only systematic errors are due to the

stopping at first exit), though, our method S was again found to be most accurate (Fig. 2).
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